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Abstract: This work aimed to demonstrate Cu2O/Al2O3 as a catalyst of the photo-Fenton process
in the UV and visible spectra. Cu2O nanoparticles were synthesized by laser ablation in liquid and
supported on Al2O3. The catalytic activity of the resulting solid was assessed in the mineralization
of bisphenol A (BPA). The studied variables were type of Al2O3 (α and γ), Cu content (0.5 and 1%),
and H2O2 concentration (1, 5, and 10 times the stoichiometric amount). The response variables
were BPA concentration and total organic carbon (TOC) removal percentage. The presence of Cu2O
nanoparticles (11 nm) with an irregular sphere-like shape was confirmed by transmission electron
microscopy (TEM) and their dispersion over the catalytic surface was verified by energy-dispersed
spectroscopy (EDS). These particles improve ·OH radical production, and thus a 100% removal of
BPA is achieved along with ca. 91% mineralization in 60 min. The BPA oxidation rate is increased
one order of magnitude compared to photolysis and doubles that for H2O2 + UV. An increase of
40% in the initial oxidation rate of BPA was observed when switching from α-Al2O3 to γ-Al2O3.
4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, acetaldehyde, and acetic acid are the BPA oxidation
by-products identified using LC/MS and based on this a reaction pathway was proposed. Finally, it
was also concluded that the synthesized catalyst exhibits catalytic activity not only in the UV spectrum
but also in the visible one under circumneutral pH. Therefore, Cu2O/Al2O3 can be recommended to
conduct a solar photo-Fenton reaction that can degrade other types of molecules.

Keywords: BPA degradation; photo-Fenton; nanocomposite catalysts; bisphenol A mineralization;
solar photo-Fenton

1. Introduction

Bisphenol A (BPA) is ubiquitous in the environment. Potential sources of human
exposure to bisphenol A are air, water, soil, sediments, indoor dust, and human tissues.
Bisphenol A is an emerging environmental contaminant. The continuous release of bisphe-
nol A into the environment results in the continuous exposure of both plant and animal
life to it. Furthermore, BPA has been determined to be an endocrine disruptor chemical,
potentially associated with numerous diseases such as breast cancer, infertility, cognitive
dysfunction, diabetes, cardiovascular diseases, and obesity. As a response to these con-
cerns, several countries have banned the use of BPA in various consumer products. The
abovementioned effects of BPA on human health and the environment prompted us to
choose it as the research object in the present work and develop the method presented here,
which can be used to remove or minimize its presence [1,2].

There are various techniques to remove pollutants from contaminated streams; these
include adsorption [3,4], biodegradation, and thermal destruction, among others. However,
these methods also have important disadvantages, such as only transferring the pollutant
from one material to another, high energy requirements, and slow process. In this con-
text, advanced oxidation processes (AOPs) are known to be highly efficient in removing
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organic contaminants from water, the Fenton process being one that has been extensively
studied [5]. However, the Fenton reaction takes place in highly acidic conditions, and iron
salts are dissolved to produce the desired ·OH radicals. Evidently, the disadvantages of
this technique are the loss of the iron catalyst (homogeneous catalysis) as well as the need
to reverse the pH to an acceptable level after the reaction. This is usually conducted by the
addition of HCl, which indicates a new problem—the increase of purification cost.

Therefore, different AOPs have been developed to overcome these disadvantages, in-
cluding ozonation [6–8], heterogeneous catalysis/photocatalysis [9,10], bioprocesses [11–13],
and Fenton-like reactions [14–16]. Among these methods, the heterogeneous photo-Fenton-
like is a promising one. It has the advantages of re-using catalysts and can be conducted at
circumneutral pH. Here, the generation of the ·OH radicals is due to the presence of H2O2,
UV light, and the metal ion that is capable of facilitating the radical production.

The degradation of bisphenols using Fenton-like processes has been studied exten-
sively in recent years, and several methods have been proposed, including sono-photo-
Fenton [17] and photo-Fenton using UV [18–24] and visible radiation [10,25,26]. Further-
more, the use of metallic nanoparticles in Fenton-like reactions has also been studied
recently, with iron being the most-used metal [6,8,15,27–33]. Copper has also been used
but to a much lesser extent [34,35], and its use in the degradation of bisphenols has been
barely assessed [18,36]. Therefore, copper was elected in this work because of its potential
as a Fenton-like reactant and due to the very little information regarding its use in the
degradation of bisphenols.

Metallic and Cu oxide nanoparticles can be produced by several methods. In this work,
Cu2O nanoparticles were produced via laser ablation in liquid (LAL). LAL is a physical
method that can produce nanoparticles from a pure metal target immersed in a liquid
medium. In short, a high-energy pulsed laser is focused on the surface of the target, the
material is abruptly heated, and plasma is formed. Subsequently, the plasma condenses
in the form of nanoparticles inside the liquid [37]. The main advantage when using LAL
is that the obtained nanoparticles are free from any chemical by-products [38,39]. This is
relevant to catalytic applications because the surface contamination-free nanoparticles are
readily available to interact with the chemical species in the reaction of interest.

This work aimed to investigate the effect of the amount of H2O2 and the amount of
Cu incorporated in the catalysts in the degradation of BPA via a photo-Fenton-like reaction
using two types of commercially available Al2O3. This is a well-known catalytic support
that is relatively low-cost, with no environmental issues. From an engineering point of
view, the support of nanoparticles is desirable to ease the catalyst separation. Other Cu
composites have been used successfully to this purpose [18].

2. Materials and Methods
2.1. Cu Nanoparticle Preparation and Characterization

A Continuum Surelite II laser system was used at a wavelength of 1064 nm, pulse
duration of 6 ns, and repetition rate of 10 Hz. The metal used was a 2.5 cm diameter Cu
target (99.99% purity, J.K. Lesker Co., Jefferson Hills, PA, USA). The liquid medium was
deionized water. The full procedure has already been published in previous works. In
short, 5 mL of water was added to a Pyrex glass containing the Cu target and irradiated for
the time necessary to produce the required amount of Cu nanoparticles (about 20 min). The
energy output from the laser system was 90 mJ/pulse. The amount of nanoparticles was
calculated from the weight difference of the target before and after the laser ablation process.
A JEOL JEM-2100 transmission electron microscope (TEM) was used to study the size and
shape of the nanoparticles. The same equipment was used to perform high-resolution TEM
(HRTEM) to elucidate the crystal structure and metallic state of the nanoparticles.

2.2. Catalyst Preparation and Characterization

Two types of alumina (Al2O3) were used in this work to study the possible effects of
the crystalline phase and the size and shape of the alumina powder on BPA degradation
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efficiency. Powders of α-Al2O3 and γ-Al2O3 (Sigma Aldrich, Burlington, MA, USA, 99%
purity, 1–10 µm particle size) were used. Both types of alumina were treated prior to the
addition of the nanoparticles with a solution of 1M NaOH (Sigma-Aldrich) at 60 ◦C for 1 h
to improve the interaction with the Cu nanoparticles. After that, the alumina was dried and
added to the Cu nanoparticle colloid and stirred for 1 h. Finally, the water was evaporated
at 80 ◦C to obtain the dried Cu/Al2O3. The Cu concentrations used in this study were
0, 0.5, 1, and 2% weight percentages. The catalysts were studied using scanning electron
microscopy (SEM), and a JEOL JSM-6510LV with an energy-dispersive X-ray spectroscopy
(EDS) probe attached to it to confirm the presence of the Cu nanoparticles on the surface of
the catalyst.

2.3. BPA Degradation Procedure

The BPA degradation was studied using a photo-Fenton-like reaction in an annular
batch reactor with 50 mL of reaction volume. The UV irradiation was performed with a
monochromatic lamp with an emission of 254 nm that was placed at the center of the reactor.
All the reactions were carried out at a constant temperature of 26 ◦C, controlled with a
water bath. The pH was not adjusted at any time and the initial pH was 6.7. The amount
of catalyst was 10 mg for all experiments, and only the Cu nanoparticle concentration in
the catalyst was varied, as mentioned above. The catalyst was added to the BPA solution
(initial BPA concentration = 50 mg/L) and dispersed throughout the reaction via magnetic
stirring. Finally, hydrogen peroxide was added to the reaction system right before the
UV lamp was turned on. The amount of peroxide was varied by 1, 5, and 10 times the
stoichiometric amount according to the total BPA mineralization reaction.

To establish the activity of the catalyst under visible light, the same aforementioned
procedure was followed, but instead of using a 254 nm wavelength lamp, the reactor was
surrounded by 4 lamps emitting light with a wavelength λ > 400 nm; 3 were placed at the
perimeter of the reactor while a fourth one was placed on top of it. The lamps were TL5
Essential 14W/840, Philips Lighting.

2.4. Analytical Methods

Aliquots were taken from the reactor at regular times and centrifuged in capillary
electrophoresis (CE) vials to gather the amount of catalyst in the bottom of the vial. It is
important to mention that a test reaction with no UV light (only hydrogen peroxide and
catalyst) was performed and no BPA degradation was registered over 1 h of reaction; there-
fore, it is safe to assume that even though there might be a very small amount of catalyst in
the extracted aliquots there was no reaction taking place during the analytical procedures.

Capillary electrophoresis (CE) was used to study the degradation of BPA. A Beck-
man P/ACE System MDQ capillary electrophoresis unit was used for all CE analysis. A
polyimide-coated silica capillary (50 mm long, 50 µm inner diameter) was used inside a
cartridge configured for UV detection. BPA was detected via direct absorbance at 214 nm,
25 kV normal polarity, and a constant temperature of 25 ◦C. Before each sample injection,
the capillary was rinsed with a 0.1 M NaOH solution for 5 min, with deionized water
for 5 min, and with the run buffer for 8 min. The run buffer was a sodium dodecyl
sulfate—tetrahydrate sodium borate (20 mM–60 mM, respectively) aqueous solution with
a pH of 9.5.

Total organic carbon (TOC) measurements were performed after 20, 40, and 60 min
of reaction in all cases to determine the mineralization percentage reached in each case. A
TOC-VCSH analyzer (Mendel Scientific, Houston, TX, USA) was used for this purpose. The
samples were sparged for 2 min with dried air to remove inorganic CO2 from the ambient
prior to the catalytic oxidation at 680 ◦C.

Liquid chromatography coupled with mass spectroscopy (LC/MS) was used to deter-
mine the possible oxidation intermediates at the end of the BPA degradation reactions. For
this purpose, an HPLC system (Agilent Series 1200) was used, coupled with an LC/MS
Q-TOF mass spectrometer (Agilent 6530) equipped with an electrospray ionization (ESI)
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source (gas temperature, 350 ◦C; drying gas, 8 L/min; nebulizer, 10 psig; sheath gas tem-
perature, 350 ◦C; sheath gas flow, 8 L/min; Vcap, 3500 V). The analyses were carried out
in the positive ion mode and the mass spectra were collected between 40 and 250 m/z.
A sample volume of 10 µL was injected into the liquid chromatograph with a flow rate
of 0.5 mL/min. Separation was achieved in a Zorbax Extend-C18 column (Agilent, Mis-
sissauga, ON, Canada) at a constant temperature of 25 ◦C. The mobile phase had two
components: Component A was pure LC/MC-grade water with a pH of 2 adjusted with
phosphoric acid, and Component B was pure methanol. A gradient elution referred to
Component B (%) was used: 0% for 15 min, 60% for 1 min, 40% for 5 min, and finally 0%
for 9 min.

To determine the concentration of H2O2 over time, a colorimetric method was ap-
plied [40]. More details about this technique can also be found in [41]. A spectrophotometer
was used to determine the absorbance of samples at 408 nm, where maximum absorbance
was observed.

3. Results
3.1. Cu Nanoparticles and Catalyst Characterization

Figure 1a shows the TEM image of a typical sample of Cu2O nanoparticles produced
by LAL. The particles have an average size of 11 nm and an irregular sphere-like shape. To
determine the chemical state and crystalline phase of the nanoparticles, high-resolution
TEM (HRTEM), as seen in Figure 1b, and electron diffraction (Figure 1c) were performed.
The interplanar distance from the HRTEM image is 0.24 nm, which can be ascribed to the
111 plane in the crystalline phase of Cu2O according to the JPCDS 01-075-1531 card. To
corroborate this, Figure 1c shows the diffraction rings that correspond to the 110, 111, 200,
and 211 planes of Cu2O. It is important to note that even though the target was pure Cu,
Cu2O nanoparticles were obtained, which means that the particles oxidize when in contact
with water or air after being produced by laser ablation.
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Figure 1. TEM image (a), HRTEM (b), and electron diffraction pattern (c) of the Cu2O nanoparticles
obtained via laser ablation in liquid.

EDS was conducted to determine the presence of Cu2O nanoparticles on the surface
of the alumina particles. Figure 2a,b show the SEM and Cu mapping for the 1% Cu/α-
Al2O3 catalyst. As can be seen, Cu is uniformly present throughout the sample. The same
observations are true for the 1% Cu/γ-Al2O3 catalyst (Figure 2c,d) as well as for the rest
of the prepared catalyst (not shown). Having the Cu2O nanoparticles all over the catalyst
surface is very important because they can achieve their function more efficiently during
the BPA degradation process, which will be further discussed in a later section.
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catalyst (c,d).

3.2. BPA Degradation Results

The degradation of BPA using UV light only, UV/H2O2, and UV/H2O2/catalyst was
tested to assess the possible contribution of each component in the reaction. It can be
observed in Figure 3 that all the experiments led to BPA degradation, with differences in the
rate and level of degradation achieved. With direct photolysis it was possible to degrade
BPA to a concentration of 22.5 ppm. When H2O2 was added to the reaction (10 times the
stoichiometric amount of the complete mineralization reaction), the BPA concentration was
as low as ~1 ppm for the same reaction time (15 min), which means that almost complete
degradation was reached. This considerable effect was achieved because it is known that
UV light is able to form ·OH radicals from H2O2 (reaction 1 in Scheme 1). However, when
the catalysts were added to the reaction, the complete BPA degradation occurred at shorter
times. By comparing the initial BPA reaction rates (−rBPA,o) reported in Table 1, it can be
concluded that the two types of Cu2O/Al2O3 catalyst show a similar behavior, γ-Al2O3
being better than α-Al2O3 by about 40%. This initial reaction rate corresponds to the first
minute of reaction, where the hydroxyl radicals are being mainly consumed by BPA; after
this reaction time, it can be observed in Figure 3 that there was a change in the slope of the
BPA concentration profiles of the heterogeneous processes. This change can be ascribed to
the competition of the oxidation by-products with the BPA for hydroxyl radicals. It can
also be observed in Table 1 that the initial BPA oxidation rate aided by the catalyst was
one order of magnitude higher than that with UV and hydrogen peroxide and with UV
only. Table 1 also presents the pseudo-first order kinetic constants for each process; it can
be observed that the specific rate constant for α-Al2O3 was about 70% higher than that
obtained with UV/H2O2 and was more than twice that when the support was γ-Al2O3.
Although the determination coefficient, R2, is still reasonably good for the heterogeneous
process, it can be observed that is not as good as for the homogeneous case. This could be
ascribed to not incorporating in an explicit way the competition of the organic molecule
with the catalyst for the photons in the applied kinetic power law model [42].
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Scheme 1. Reactions occurring at the catalyst surface and in solution in the studied photo-Fenton
process catalyzed by Cu2O/Al2O3.

Table 1. Percent of BPA mineralization, initial BPA oxidation rate (−rBPA,o), pseudo-first order kinetic
constant (k), and determination coefficient (R2) under different experimental conditions.

BPA Mineralization Percentage (%)

Time (min) Photolysis
(UV Only) UV + H2O2

UV + H2O2 +
1% Cu2O/α-Al2O3

UV + H2O2 +
1% Cu2O/γ-Al2O3

20 2.4 17.5 19.6 24.4
40 4.7 50.5 70.1 79.6
60 7.1 80.9 86.5 90.7

Kinetic Parameters and Determination Coefficient

−rBPA,o
(molBPA/L·min) 1.09 × 10−5 1.23 × 10−5 1.09 × 10−4 1.4 × 10−4

k (min−1) 0.074 0.1982 0.3432 0.4511
R2 0.991 0.9969 0.9874 0.9685
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In these cases, the Cu+ ion plays a crucial role in the reaction, because the OH radicals
can also be formed from the Cu ions in a similar way that Fe ions can form these radicals in
a conventional Fenton reaction. Cu+ can react with H2O2 to form OH and −OH radicals
(reaction 2 in Scheme 1 [43–45]), and it is well-known that the OH radicals are the main
responsible for complete mineralization of BPA through reaction 3 in Scheme 1 [46–48].

Figure 3 shows BPA degradation based solely on the BPA peak intensity measured in
the CE electropherograms; however, it is not enough to determine the extent of complete
mineralization of the molecule. For this purpose, Table 1 shows the TOC results for the
same set of experiments. As expected, all the experiments show different mineralization
values, following the tendency from Figure 3. The lowest mineralization achieved after
1 h of reaction was for the experiment when only UV light was used. This is in agree-
ment with other reports where the activation of the BPA molecule by UV light has been
suggested [48]. On the other hand, the highest mineralization was reached when the
catalyst with Cu2O nanoparticles was used. Therefore, the synthesized catalyst enhances
reaction 2 (Scheme 1) in a way that not only hastens BPA degradation, but it also aids the
degradation of intermediates until complete mineralization.

Figure 4 shows the consumption of hydrogen peroxide during three processes: when
only adding BPA (BPA + H2O2); when adding BPA, UV light, and H2O2; and when the
catalyst was added to this system. In the first case, there was no consumption of H2O2,
and this in agreement with the BPA concentration profiles under these conditions. When
the BPA + H2O2 was irradiated with UV light, an important consumption of H2O2 was
observed (red dots); this was from its decomposition, as shown in Scheme 1. However,
when the catalyst was added, 1500 mg/L of H2O2 were consumed within the system, which
was significantly higher than the H2O2 consumed when the catalyst was absent. This is
evidence of BPA oxidation occurring via the hydroxyl radicals produced in reactions 1 and
2 (see Scheme 1) as reported by [48]. Nevertheless, because of the narrow Cu2O bandgap, a
photocatalytic effect of the cupreous oxide cannot be ruled out [18]. It is worth noticing
that the radicals produced are not only consumed in the degradation of BPA but also in the
oxidation of the by-products.
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Scheme 2 depicts a plausible BPA degradation pathway via hydroxyl radicals. The
identification of acetic acid, acetaldehyde, 4-hydroxybenzaldehyde, and 4-hydroxybenzoic
acid was possible by means of LC/MS.
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proposed reaction pathway.

Because the proposed degradation pathway is via hydroxyl radicals, it is expected
to observe some similarities with other reported proposals. The first step expected is a
hydroxyl radical attack of the electron-rich carbon positions. According to calculations
made by [46], such positions correspond to C3 and C8. The calculated frontier density for
these positions was 0.206 and 0.207, respectively. The hydroxyl radical attack of C3 may
actually lead to 4-hydroxybenzaldehyde, which was identified in this work by LC/MS.
It is worth pointing out that, in the context of BPA oxidation by hydroxyl radicals, this
intermediate has only been identified in the photocatalytic process conducted by [46]. The
hydroxyl radical attack of the electron-rich positions also leads to the appearance of the
phenyl group [47] that undergoes hydroxylation to form hydroquinone. According to
the literature, benzoquinone is then produced via hydroquinone dehydrogenation. Then
the ring opens from further attack by hydroxyl radicals [41,47], and acetaldehyde and
acetic acid appear. It is worth noting that, as in other reports, other intermediates could be
present at the end of the reaction; however, they were not detected, most likely because the
concentration was lower than the detection limit.

Scheme 3 depicts the three plausible structures of BPA depending on pH. This directly
impacts the observed intermediates and the efficiency of the process. In this work, the
initial pH was 6.7 (BPA is a weak organic acid) and it only went down to around 6.3 at
the end of the experiments. Therefore, structure (A) in Scheme 3 is the one reacting in the
studied system.
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3.3. Effect of H2O2 Concentration

From the previous results it is clear that H2O2 is important for the degradation of BPA,
and three different concentrations of this component were tested with only UV light and
no catalyst. The assessed concentrations were 1 time (1X), 5 times (5X), and 10 times (10X)
the amount of H2O2 theoretically needed according to the stoichiometry of the complete
mineralization reaction of BPA. It can be seen in Figure 5 that the lowest degradation
occurred when using 1X H2O2. On the other hand, there seems not to be a considerable
difference between the 5X and 10X cases, and it could be safely assumed that it is practically
the same to use 5X or 10X of H2O2. However, the TOC results in Table 2 indicate that
the mineralization achieved with 10X of H2O2 was considerably higher. This means that
the rate of BPA degradation was very similar, but in the case of 10X the extra H2O2 was
reacting to degrade the intermediates faster.
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Table 2. Percentage of BPA mineralization under different H2O2 concentrations and UV light. CBPA,o

= 50 mg/L, pHo = 6.7, Wcat = 0.0 g/L.

Time (min) 1X H2O2 5X H2O2 10X H2O2

20 2.3 16.8 17.5
40 15.5 25.1 50.5
60 20.6 50.0 80.9

It is worth pointing out that H2O2 was also being generated within the system by
means of reactions 4, 5, and 6 [43,49], depicted in Scheme 1. This is plausible because of
the highly energetic lamp that was being used. Figure 6 shows the H2O2 generation under
different operating conditions. It can be observed that the accumulated amount of H2O2
with the lamp after 60 min was about 1.75 mg/L. It is worth clarifying that this was only
part of the generated amount since there was a fraction being dissociated by UV light.
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3.4. Effect of Cu2O Concentration on the Catalyst

Based on the results from the previous section, γ-Al2O3 was elected as the support
material to study the effect of Cu2O concentration on the degradation of BPA. Figure 7
shows the BPA degradation for γ-Al2O3 catalysts with different quantities of Cu2O added.
As can be seen, when pure γ-Al2O3 was used without Cu2O nanoparticles, the degradation
curve was very similar to the case of H2O2 + UV light (Figure 5), which means that the γ-
Al2O3 acted only as a support for Cu2O nanoparticles and did not contribute to any catalytic
function, nor hinder the reaction. On the other hand, when Cu2O nanoparticles were added
to the surface of the catalyst, a faster degradation of BPA was observed. This reinforces
the hypothesis that the Cu2O nanoparticles help degrade the BPA by creating ·OH groups
via mechanisms such as the one proposed in reaction 2 in Scheme 1. Furthermore, there
was no notable difference when 0.5% or 1.0% of Cu2O was added to the catalyst, since the
degradation profiles in both cases are very similar. In addition, the TOC results for these
two cases show that the final mineralization after 1 h of reaction was similar (Table 3). This
could be explained in terms of nanoparticle agglomeration on the catalyst surface: when
loading a material with nanometric nanoparticles, there is a certain concentration where
the particles start to agglomerate instead of being dispersed evenly on the surface of the
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material. If this is true, then the total surface area available on the nanoparticles does not
grow proportionally with the number of nanoparticles loaded to the material.
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Table 3. Percent of mineralization (TOC) of BPA by γ-Al2O3 with different Cu2O content.

Time (min) Pure γ-Al2O3 0.5% Cu2O/γ-Al2O3 1% Cu2O/γ-Al2O3

20 19.8 24.0 24.5
40 46.6 60.2 79.6
60 79.6 88.3 90.7

3.5. Effect of Radiation Source Wavelength

This variable was studied by using lamps emitting light in the visible spectrum
(Vis light). Figure 8 shows the effect of different reaction variables on the TOC removal
percentage after 60 min of reaction time. According to the results depicted in Figure 8, the
removal of BPA by adsorption was only 5% and the removal by interaction with hydrogen
peroxide was only 2.5% (gray bar). However, the TOC removal increased when Vis light
was added to the system, which enhanced the TOC removal up to 18%. By comparing
the results with Vis and the ones with Vis + H2O2, it can be concluded that dissociation of
H2O2 does not occur readily or does not proceed at all under visible light, and therefore the
addition of hydrogen peroxide alone under visible light does not improve TOC removal.
On the other hand, when the catalyst and hydrogen peroxide were added to the system,
the TOC removal significantly increased up to 40 and 45% for the 1% and 2 w% Cu catalyst,
respectively. This is evidence of the activity of the catalyst under visible light, which is
a desirable characteristic in a catalyst for the sake of sustainability. The activity of Cu2O
under visible light was expected due to its narrow bandgap (2.2 eV) [18].
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4. Conclusions

Cu2O nanoparticles were obtained via laser ablation in liquid (LAL) and supported on
Al2O3. This material catalyzes the photo-Fenton process to remove bisphenol A (BPA) under
UV light as well as under visible light at circumneutral pH, and the need for acidification
is eliminated. The BPA oxidation rate is one order of magnitude higher when using the
catalyst than when applying only UV light and is more than twice that achieved when
H2O2 is only dissociated by light. The BPA oxidation rate is affected by the crystalline
structure of the catalyst support, Al2O3, and the mineralization extent is directly related to
the initial H2O2 concentration. The highest mineralization percentage (ca. 91%) was found
using 1%Cu2O/γ-Al2O3, 10 times the stoichiometric amount of H2O2 at an initial pH of
6.7, and catalyst loading of 0.2 g/L.

After 1 h of treatment, the remaining compounds in solution were acetic acid, acetalde-
hyde, and in smaller quantities 4-hydroxybenzaldehyde and 4-hydroxybenzoic acid.

Author Contributions: Conceptualization, O.O.-M., R.N. and K.D.; methodology, O.O.-M., R.N.,
K.D., S.B. and D.A.-P.; validation, O.O.-M., R.N., K.D. and S.B.; investigation, O.O.-M., R.N., K.D.,
S.B. and D.A.-P.; writing—original draft preparation, O.O.-M. and R.N.; writing—review and editing,
O.O.-M., R.N., K.D. and S.B.; supervision, O.O.-M. and R.N.; project administration, O.O.-M. and
R.N.; funding acquisition, O.O.-M. and R.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2022, 14, 3626 13 of 15

Abbreviations List and Nomenclature

Abbreviations List
AOP Advanced oxidation process
BPA Bisphenol A
BPS Bisphenol S
CE Capillary electrophoresis
EDS Energy dispersive X-ray spectroscopy
HRTEM High resolution transmission electron microscopy
LAL Laser ablation in liquids
LC/MS Liquid chromatography coupled with mass spectroscopy
TEM Transmission electron microscopy
TOC Total organic carbon
SEM Scanning electron microscopy
Nomenclature
−rBPA,o Initial BPA oxidation rate
k Pseudo-first order kinetic constant
R2 Determination coefficient
CBPA,o Initial BPA concentration
pHo Initial pH
Wcat Catalyst concentration
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